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Fig. 1: Applications of Magic Fixup. We propose a diffusion model for image
editing. Starting from an input image (a), a user specifies their desired changes by
rearranging automatically segmented scene objects using simple 2D transforms to pro-
duce a coarse edit (b). Our model transforms this coarse edit into a realistic image (c),
correctly accounting for secondary effects critical for realism, such as reflections on the
water (top) or changes in depth-of-field (bottom), producing much more plausible edits
than state-of-the-art methods (d).

Abstract. We propose a generative model that, given a coarsely edited
image, synthesizes a photorealistic output that follows the prescribed
layout. Our method transfers fine details from the original image and
preserve the identity of its parts. Yet, it adapts it to the lighting and
context defined by the new layout. Our key insight is that videos are a
powerful source of supervision for this task: objects and camera motions
provide many observations of how the world changes with viewpoint,
lighting, and physical interactions. We construct an image dataset in
which each sample is a pair of source and target frames extracted from
the same video at randomly chosen time intervals. We warp the source
frame toward the target using two motion models that mimic the ex-
pected test-time user edits. We supervise our model to translate the
warped image into the ground truth, starting from a pretrained diffusion
model. Our model design explicitly enables fine detail transfer from the
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source frame to the generated image, while closely following the user-
specified layout. We show that by using simple segmentations and coarse
2D manipulations, we can synthesize a photorealistic edit faithful to the
user’s input while addressing second-order effects like harmonizing the
lighting and physical interactions between edited objects.

1 Introduction

Image editing is a labor-intensive process. Although humans can quickly and
easily rearrange parts of an image to compose a new one, simple edits can eas-
ily look unrealistic, e.g., when the scene lighting and physical interactions be-
tween objects become inconsistent. Fixing these issues manually to make the
edit plausible requires professional skills and careful modifications, sometimes
down to the pixel level. The success of recent generative models [16, 18, 23, 42]
paves the way for a new generation of automated tools that increase the realism
of image edits while requiring much sparser user inputs [3,14,27,45]. Generative
methods providing explicit spatial keypoints control have been proposed but are
either limited to certain domains [38] or modest changes [46]. State-of-the-art
approaches, however, regenerate pixels based on a user-specified text prompt
and a mask of the region to influence [9, 10, 52, 54]. This interface is not always
natural. In particular, it does not allow spatial transformations of the existing
scene content, as we show in Figure 2, and object identities are often not fully
preserved by the re-synthesis step [12,49].

Reference Coarse edit input Ours InstructPix2Pix [9]
prompt: “switch the order of the boxes”

Masa-ctrl [10]
prompt: “small box left to a larger box”

Fig. 2: Comparison with text based control. Our method directly takes a coarse
user edit and makes it photorealistic. Our editing is both easy and precise, and our
model can harmonize the global illumination appropriately. Text-based editing meth-
ods [9, 10] on the other hand, are not able to perform such edits, resulting in global
appearance changes [9] or unrealistic image [10].

In this paper, we propose a new approach to image editing that offers the
controls of conventional editing methods and the realism of the modern gen-
erative model (Figure 1). Our method uses human inputs where it shines:
users can segment the image and rearrange its parts manually in a “cut-and-
transform” approach, e.g., using simple 2D transforms, duplication, or deletion
to construct their desired layout, just like a collage [45]. We call our collage-like
editing interface the Collage Transform. We then train a diffusion model to take
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care of the hard work of making the edit photorealistic. Our model “projects”
the coarsely edited image onto the natural image manifold, fixing up all the
low-level image cues that violate its image prior, such as tweaking poses, blend-
ing object boundaries, harmonizing colors, adding cast shadows, reflections and
other second-order interactions between the object and the environment.

Crucially, we explicitly fine-tune a latent diffusion model [42] so its output
deviates as little as possible from the user’s specifications and the appearance
of the original objects in the scene. This is essential for photographers, as they
spend significant effort capturing their images and would like to retain the con-
tent identity as much as possible. When editing an image, there is a subtle
balance between being faithful to the original image and harmonizing the edited
image to preserve realism. This is the regime that our work focuses on. Our
insight is that videos provide a rich signal of how an edited photo’s appearance
should change to preserve photorealism. From videos, we can learn how objects’
appearances change in the real world as they deform and move under changing
light. Camera motion and disocclusions give us priors about what hides behind
other objects and how the same object looks under changing perspectives.

To exploit these cues, we build a paired image dataset from a large-scale
video corpus. Each pair corresponds to two frames sampled from the same video:
source and target frames. We then automatically segment [29], and transform
objects in the source frame to match the pose of the corresponding objects
in the target frame, using two motion models based on optical flow, designed
to simulate the coarse edits a user would make using our Collage Transform
interface. Since the images are now roughly aligned, we can train our model
to convert the coarsely edited image into the ground truth target frame in an
image-to-image [25,44] fashion. This alignment procedure encourages the model
to follow the user-specified layout at test time closely. Additionally, our model
is carefully designed to transfer fine details from the reference source frame to
preserve the identity and appearance of objects in the scene.

Our approach can produce plausible and realistic results from real user edits,
and effectively projects coarse user edits into photorealistic images, confirming
our insights on the advantages of using video data and a carefully designed mo-
tion model. Compared to the state-of-the-art, we show our outputs are preferred
89% of the time in a user study.

In short, our contributions are as follows:

– the Collage Transform, a natural interface for image editing that allows users
to select and alter any part of an input image using simple transforms and
that automatically turns the resulting edit into a realistic image,

– a new paired data generation approach to supervise the conversion from
coarse edits to real images, which extracts pairs of video frames and aligns
the input with the ground truth frame using simple motion models,

– a conditioning procedure that uses: 1. the warped image to guide layout in
the diffusion generator, and 2. features from a second diffusion model to
transfer fine image details and preserve object identity.
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2 Related Work

Classical image editing. Classical image editing techniques offer various types of
user controls to achieve diverse objectives. For instance, image retargeting aims
to alter an image’s size while preserving its key features and content [4, 43, 47,
53]. In contrast, image reshuffling rearranges an image’s content based on user-
provided rough layouts and imprecise mattes [7, 13, 47]. Image harmonization
integrates objects from different images, adjusting their low-level statistics for
a seamless blend [26, 50]. A common thread in these classical image editing
applications is the crucial role of user interaction, which provides the necessary
control for users to realize their vision. Our method aligns with this approach,
allowing users to reconfigure a photograph based on their preliminary edits.

Controllable image generation. The rapid advancement in photorealistic image
generation has inspired researchers to adapt generative models for image edit-
ing tasks. Early efforts focused on high-level edits, like altering age or style, by
manipulating latent space of Generative Adversarial Networks (GANs) [1,2,11].
In a vein similar to our work, Generative Visual Manipulation [59] involves pro-
jecting user-edited images onto the natural image manifold as approximated
by a pre-trained GAN. The recent introduction of CLIP embeddings [39] has
further propelled image editing capabilities, particularly through text prompts
[5,9,15,19,22,27,34]. DragGAN [38] introduces fine control in image editing by
using key-handles to dictate object movement, and follow-up works extend the
drag-control idea to diffusion models [32, 35, 46]. Image Sculpting [57] takes a
different approach by directly reposing the reconstructed 3D model of an object
and re-rendering it, providing high level of control, but time consuming edit-
ing process unlike our Collage Transform interface that is designed to increase
editing efficiency. CollageDiffusion [45] guides text-to-image generation by using
a collage as additional input. However, while CollageDiffusion focuses on con-
trolling the generation of an image from scratch, we focus on using collage-like
transformation to edit a reference image, and focus on preserving its identity.

Reference-based editing with generative models. To extend controllable image
generation into editing real (non-generated images), one can invert the image
back to noise [48], and then guide the iterative denoising process to control
the image generation [6, 10, 33]. However, naively guiding the model without
any grounding can lead to a loss in image identity. Prior work [12, 17, 56] pre-
serves the image identity through a pretrained feature extractor like CLIP [39]
or DINO [37], using a Control-Net like feature-injection [12,58], a dual-network
approach [10, 24], or a combination of those approaches [12, 55]. We adopt the
dual-network approach, as it allows us to fully fine-tune the model and taylor it
to our photorealistic editing task using our video-based dataset. AnyDoor [12]
similarly uses video frames during training, but their focus is to recompose indi-
vidual objects into the scene. On the other hand, we use video data to recompose
the entire scene and use motion models designed for a convenient photo editing
interface. Closest to our work is MotionGuidance [20] that uses optical flow to
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guide editing the reference frame with diffusion guidance [6] for a highly user-
controllable edit. However, dense optical flow is difficult to manually provide for
a user, unlike simple cut-and-transform edits in our Collage Transform. Further-
more, they rely on a prohibitively time-consuming guidance that take as long as
70 minutes for a single sample. On the other hand, our approach takes less than
5 seconds to fix up the user edit, allowing for interactive editing process.
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Fig. 3: Overview. Our pipeline (left panel) uses two diffusion models in parallel, a
detail extractor (top) and a synthesizer (bottom), to generate a realistic image from a
coarse user edit and a mask recording missing regions caused by the edit. The detail
extractor processes the reference image, a noisy version of the reference and the mask,
to produce a set of features that guide the synthesis and allow us to preserve the object
appearance and fine details from the reference image. The synthesizer generates the
output conditioned on the mask and coarse edit. The features from the detail extractor
are injected via cross-attention at multiple stages in the synthesizer, in order to transfer
details from the input. Both models are finetuned on our paired dataset. The right panel
shows a detailed view of our cross-attention detail transfer operator.

3 Method

We aim to enable an image editing workflow in which users can select objects in
a photograph, duplicate, delete or rearrange them using simple 2D transforms
to produce a realistic new image (§ 3.1). We leverage image priors from pre-
trained diffusion models to project the coarsely edited image onto the natural
image manifold, so the user can focus on specifying high-level changes without
worrying about making their edits plausible (§ 3.2). Existing diffusion models
can produce impressive results but often do so at the expense of control and
adherence to the user input [33]. In particular, they tend to “forget” the identity
and appearance of the edited object [56], and often only loosely conform to the
user-specified pose [12]. Our method addresses these issues using two mecha-
nisms. First, our synthesis pipeline is a conditional diffusion model (§ 3.4) that
follows the coarse layout defined by the user, and transfers fine details from the
reference input image (§ 3.3) to best preserve the original image content. Sec-
ond, we construct a supervised dataset exploiting object motion from videos to
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finetune the pretrained model to explicitly encourage content preservation and
faithfulness to the input edit (§ 3.5).

3.1 Specifying coarse structure with simple transforms

Starting from an image I ∈ R3hw, h = w = 512, we run an automatic segmen-
tation algorithm [29] to split the image into non-overlapping semantic object
segments. The user can edit this image by applying 2D transformations to the
individual segments (e.g., translation, scaling, rotation, mirroring). Segments can
also be duplicated or deleted. Figure 1 illustrates this workflow. We keep track
of holes caused by disocclusions when moving the segment in a binary mask
M ∈ {0, 1}hw, and inpaint them using a simple algorithm [8]. We denote the
resulting, coarsely edited image by Icoarse ∈ R3hw.

We operate in an intermediate latent space for efficiency, but our approach
also applies to pixel-space diffusion. With a slight abuse of notation, in the
rest of the paper I, Icoarse ∈ R3hw, with h = w = 64 refer to the input and
coarse edit after encoding with the latent encoder from Stable Diffusion [42],
and M the mask downsampled to the corresponding size using nearest neighbor
interpolation. The latent triplet (I, Icoarse,M) forms the input to our algorithm.

3.2 From coarse edits to realistic images using diffusion

We want to generate a realistic image that (1) follows the large-scale structure
defined by the coarse user edit, and (2) preserves the fine details and low-level
object appearance from the unedited image, filling in the missing regions. Our
pipeline, illustrated in Figure 3, uses 2 diffusion models.

The first, which we call synthesizer fsynth, generates our final output image.
The second model, which we name detail extractor fdetail, transfers fine-grained
details from the unedited reference image I to our synthesized output during
the diffusion process. It modulates the synthesizer by cross-attention at each
diffusion step, an approach similar to Masa-Ctrl [10] and AnimateAnyone [24].
Both models are initialized from a pretrained Stable Diffusion v1.4 model [42],
and finetuned on our paired dataset (§ 3.5). Since we have a detailed reference
image I to guide the synthesis, we do not need the coarse semantic guidance
provided by CLIP, so we remove the CLIP cross-attention from the model.

Let T ∈ N∗ be the number of sampling steps, and α0, . . . , αT ∈ R+ be the
alphas of the diffusion noise schedule [23]. Starting from an image x0 ∈ R3hw, the
forward diffusion process progressively adds Gaussian noise, yielding a sequence
of increasingly noisy iterates:

xt ∼ N (
√
αtxt−1; (1− αt)I) . (1)

The base diffusion model f is trained to reverse this diffusion process and synthe-
size an image iteratively, starting from pure noise xT ∼ N (0, I). The synthesizer
and detail extractor in our approach make a few modifications to this base model,
which we describe next.
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3.3 Extracting details from the reference image

During inference, at each time step t, we start by extracting a set of features Ft

from the reference image using fdetail (Figure 3, top). These features will guide
the synthesis model and help preserve realistic image details and object identity.
Since we use a pretrained diffusion model as a feature extractor, we start by
adding noise to the reference unedited image:

It =
√
ᾱtI + (1− ᾱt)ϵ, (2)

with ϵ ∼ N (0, I), ᾱt =
∏t

s=1 αs. We extract the feature tensors immediately
before each of the n = 11 self-attention blocks in the model:

Ft := [f1
t , . . . , f

n
t ] = fdetail([It, I,M ]; t), (3)

where [·] denotes concatenation along the channel dimension. Our feature ex-
tractor also takes as input the clean reference image since it is always available
for detail transfer and mask, so the model knows which regions need inpainting.
Since the pretrained model only takes I as an input, we modify the first layer at
initialization by padding its weight with zeros to accept the additional channel
inputs. Using a noisy version of the reference ensures the extracted features are
comparable to those in the cross-attention operators of the synthesis model.

3.4 Image synthesis by detail transfer to the coarse edit

The synthesizer fsynth generates the final image, conditioned on the detail fea-
tures Ft. Unlike standard diffusion sampling, we do not start from pure Gaussian
noise. Instead, inspired by SDEDit [33], we start from an extremely noisy version
of the coarsely edited image:

xT =
√
ᾱT Icoarse + (1− ᾱT )ϵ. (4)

This initialization circumvents a commonly observed issue where diffusion mod-
els struggle to generate images whose mean and variance deviate from the normal
distribution. This is particularly important in our setup as the user input can
have arbitrary color distribution, and we need the model to match the user in-
put. This has been shown to stem from a domain gap between training and
sampling [21, 31]: the model never sees pure noise during training, but a sam-
ple from the normal distribution is the starting point for inference. Our latent
initialization addresses this issue by directly bridging the gap between training
and inference. In Figure 4 we highlight that by starting from pure noise, we
cannot synthesize images with deep dynamic range, while our intiailization does
not suffer from such issues. For subsequent steps during inference, we update the
current image estimate xt at each time step t, using the following update rule:

xt−1 = fsynth([xt, Icoarse,M ]; t, Ft). (5)

We provide the mask and coarse edit as conditions by simple concatenation,
but because we need to extract fine details from the reference, we found passing
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the reference information by cross-attention with the features Ft provided richer
information. Again, we extend the weight tensor of the first convolution layer
with zeros to accommodate the additional input channels.

reference coarse edit with pure noise
initialization

with our
initialization

Fig. 4: Effects of Latent Initialization. Starting from pure noise, as is standard
practice, the model struggles to generate images with deep blacks and synthesizes
nonsensical content to keep the image’s mean and standard deviation close to the
starting Gaussian noise. This is a known issue with current diffusion models [21, 31].
Instead, during inference, we initialize the latent to the warped image with a very large
amount of additive Gaussian noise before running the diffusion. This simple change
makes a drastic difference and lets the model preserve the image content.

Detail transfer via cross-attention We use the intermediate features Ft = [f1
t , . . . , f

n
t ],

extracted before the detail extractor’s self-attention layers to transfer fine im-
age details from the reference image to our synthesis network by cross-attention
with features [g1t , . . . , g

n
t ] extracted after the corresponding self-attention layers

in the synthesis model. See the right panel of Fig. 3 for an illustration, where Q,
K, V are linear projection layers to compute the query, key, and value vectors,
respectively, and W t

i is the matrix of attention scores for layer i, at time step t.
The feature tensors git, f

i
t are 2D matrices whose dimensions are the number of

tokens and feature channels, which depend on the layer index i.

3.5 Training with paired supervision from video data

We jointly finetune the two diffusion models on a new dataset obtained by ex-
tracting image pairs from videos to reconstruct a ground truth frame given an
input frame and a coarse edit automatically generated from it. Our insight is that
motion provides useful information for the model to learn how objects change
and deform. Videos let us observe the same object interact with diverse back-
grounds, lights, and surfaces. For example, skin wrinkles as a person flexes their
arm, their clothes crease in complex ways as they walk, and the grass under
their feet reacts to each step. Even camera motion yields disocclusion cues and
multiple observations of the same scene from various angles.

Concretely, each training sample is a tuple (I, Igt, Icoarse,M), where I and Igt
are the input and ground-truth frames, respectively, extracted from the video
with a time interval sampled uniformly at random from {1, . . . , 10} seconds
between them. However, if the computed flow between the two frames was too



Magic Fixup 9

large (at least 10 percent of the image has a flow magnitude of 350 pixels), we
resample another pair. This is to ensure that the warping produces reasonable
outputs. We construct the coarse edit Icoarse and corresponding mask M using
an automated procedure that warps I to approximately match Igt, in a way that
mimics our Collage Transform interface. For this, we use one of 2 possible editing
models: a flow-based model and a piecewise affine motion model (Fig 5).

Flow-based editing model We compute the optical flow using RAFT-Large [51]
for each consecutive pair of frames between I and Igt and compose the flow
vectors by backward warping the flow to obtain the flow between the two frames.
We then forward warp I using softmax-splatting [36], to obtain Icoarse, which
roughly aligns with the ground truth frame. The forward warping process creates
holes in the image. We record these holes in the mask M . Our model needs to
learn to inpaint these regions and those we have no correspondence (e.g., an
object appearing in the frame). Using flow-based warping helps the model learn
to preserve the identity of the input, rather than always hallucinating new poses
and content.

piecewise affine motion modelflow-based motion model

reference frame coarse edit occlusion masktarget frame, flow reference frame coarse edit occlusion masktarget frame, flow

Fig. 5: Motion models. To generate aligned training pairs, we use 2 motion model to
warp the reference frame towards the ground truth (target frame). The first model uses
optical flow (left). It provides the most accurate alignment but does not correspond to
what the user would provide during inference. This motion model encourages adherence
of our model’s output to the layout specified using the coarse edit. To generate training
pairs closer to the collage-like user inputs, we use a second motion model (right). For
this, we segment everything in the image [29] and apply similarity transforms to each
segment, estimated from the flow within the segment. Figure 9 analyses the impact of
these motion models on the final result.

Piecewise affine editing model Optical flow warping can sometimes match the
ground truth too closely. As we discuss in Section 4 and Figure 9, training the
flow-based editing model only can limit the diversity of our outputs, leading
to images that do not deviate much from the coarse edit. Flow-warping is also
reasonably distinct from our expected test-time user inputs (§ 3.1). Our sec-
ond editing model addresses these issues by transforming the reference frame
as a collage. We compute a depth map for the image using MiDaS [40, 41] and
automatically segment the image using SegmentAnything [29].

We then transform each segment using the affine transformation that best
matches the optical flow for this segment, compositing them back to front ac-
cording to each segment’s average depth. For the image regions that are not
segmented, we use the optical flow warping scheme described above.
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We use a dataset consisting of 12 million 5-10 second clips of stock videos, and
we filter out keywords that indicate static scenes or synthetic/animated videos,
as we are only interested in photo-realistic videos and also highly dynamic scenes
where the motion is too large (like car racing). For each valid clip, we sample
one pair and compute the warping using both motion models. After filtering for
desired motion, we use 2.5 million clips, creating a dataset consists of 2.5 million
samples for each motion model, making a total of 5 million training pairs.

3.6 Implementation details

We finetune both models jointly for 120,000 steps with a batch size of 32, using
Adam [28], with a learning rate of 1 × 10−5 on 8 NVIDIA A100 GPUs, which
takes approximately 48 hours. Note that this is considerably more efficient than
recent compositing work [56] that uses 64 NVIDIA V100 GPUs for 7 days. We
hypothesize that the stronger input signal helps the model converge faster. We
use a linear diffusion noise schedule, with α1 = 0.9999 and αT = 0.98, with
T = 1000. During inference, we sample using DDIM for 50 denoising steps.

4 Experimental Results

We evaluate our method qualitatively on a set of user edits to demonstrate real-
world use cases, as well as on a held-out validation dataset created in the same
way as our training set (§ 3.5) for quantitative evaluation.

Our model is trained on a synthetically-generated dataset. We validate that it
generalizes to real user edits using a prototype interface illustrating our segment-
based editing workflow. The user can segment any part of the image and trans-
form, duplicate, or delete it. We provide a video demonstrating this editing inter-
face in the supplementary materials. To the best of our knowledge, no previous
work focuses exactly on our use case (photorealistic spatial edits), so we adapt
closely related techniques to our problem setting for comparison. Specifically, we
compare to the following baselines:

1. SDEdit [33]: a general text-based editing method that trades off the adher-
ence to the input image and the faithfulness to the text. This is the most
general method we compare against, as we can directly provide it with the
coarse user edit and a generated caption.

2. AnyDoor [12]: an image compositing model that harmonizes objects from a
source frame to a target frame. We follow the author’s method of using it for
spatially compositing an image by inpainting the object using an off-the-shelf
inpainting algorithm and re-inserting the object into the desired location.

3. DragDiffusion [46]: a drag-based editing model that takes source-target key-
handles to move parts of the object for re-posing.

Adapting the baselines. We convert our inputs to the interface expected by
these baselines for comparison. SDEdit requires choosing a strength parameter
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SDEdit [Meng et al. 2022]oursreference coarse edit

Fig. 6: Applications. We show example of scene recompositing. Our model is capable
of synthesizing compelling effects that harmonize realistically with the rest of the image
such as: changing the depth of field (row 1), adjusting the global illumination (green
reflection on the cube, row 2), and removing or adding reflections (rows 3 and 5).
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dictating the amount of noise added to the input and trades off between faithful-
ness and unconstrained synthesis. We set the strength to 0.4 in all experiments,
i.e. we start at 40% of the way through the diffusion process, adding the corre-
sponding level of noise to Icoarse. Unlike ours, their model expects a text input,
which we automatically compute using BLIP [30].

To insert an object into a scene with AnyDoor, the user selects the object
in a source image, and the destination region in a different target image. To
adapt it to our use case, we follow the authors’ suggestion of using the same
image as source and target, using an off-the-shelf inpainting model to remove
the selected object, then re-inserting it in a different image region. Their method
offers limited control: the size of the insertion region is the only way to control
the synthesized pose.

To compare with DragDiffusion [46], we record the segment motion in our
user interface, compute the motion vectors for each pixel, and use this informa-
tion to automatically create the keypoint-handles input needed by DragDiffusion.

AnyDoor [Chen et al. 2023]oursreference coarse edit

Fig. 7: Comparison to Anydoor [12]. Anydoor was trained to insert objects from
one image to another. We can repurpose their approach for our image editing task
by using the same image as source and target. Their approach does not preserve the
dog’s identity in this example. AnyDoor also does not harmonize the lighting properly
(the sun direction and shadows are wrong), the image is too bright, and some blending
seams are visible. On the other hand, our output shows natural shadows and plausible
contacts with the ground, adding realistic moving sand consistent with the pose.

4.1 Evaluation on user edits

Image recomposition. Figure 6 shows our model adds realistic details to ob-
jects moved to a region of sharper focus, snaps disconnected objects together,
and resynthesizes shadows and reflections as needed. In Fig. 7, we used our model
to delete the dog (and automatically remove the shadow), and then re-inserted
the dog using AnyDoor. The dog’s identity underwent significant changes, and
AnyDoor does not harmonize the composite with the ground. It also does not
completely remove the halo caused by the inpainting mask in the destination re-
gion. In contrast, our model synthesizes a coherent output without discontinuity
artifacts.
Image reposing. Since we allow the user to edit the image by selecting seg-
ments of arbitrary size, the user can re-pose objects by selecting sub-parts and
applying an affine transformation on them, effectively animating the object. In
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Fig. 8 compares our method to DragDiffusion. DragDiffusion moves the lion’s
body higher up, which loosely aligns with the user edit, but is inconsistent with
the user’s intent of only moving the head. This example highlights how a non-
interactive point-dragging interface can be at odds with the user’s desired output,
because it does not provide a good preview of what the model would generate
before running it. Our Collage Transform interface is more immediate, and our
coarse edit aligns with the final output. In the second example, DragDiffusion
collapses, likely because the user input is complex and goes beyond a minimal
displacement of the subject that it can handle.

DragDiffusion [Shi et al. 2023]oursreference coarse edit

Fig. 8: Comparison with DragDiffusion. We use the Drag Diffusion [46] to gen-
erate the results in the right column. We seed dragging control points this method
expects for each of the modified image segments, and displace them using the same
affine transform used to produce our coarse edit (second column). DragDiffusion gen-
erates fairly conservative image edits, and collapses with more drastic reposing edits.
However, our method successfully handles wide range of reposing levels.

Preceptual user study. To evaluate the realism of our editing, we conducted a
user study to compare the quality of our edits against the edits with SDEdit [33].
We used 30 diverse photo edits, with 27 students participating and voting for all
pairs of images. For each pair, we provided the users with the reference image
as well as the intended user edit, and asked for each sample the following “For
the following edit, which of those images do you find a more realistic result?”
in a 2-alternative forced-choice (2AFC) format. For 80% of the edits, at least
75% of the users preferred our method. For the remaining images, except for one
image, users preferred our method 65 − 80% of the time. For one image in out
of domain edit (editing a non-realistic artistic painting), users preferred both
edits almost equally likely (52 % of users preferred SDEdit). We include a more
detailed analysis as well as the visuals used in the supplementary material.



14 Alzayer et al.

reference coarse edit flow motion model only affine motion model only ours (flow + affine models)

Fig. 9: Motion models ablation. We compare how the 2 motion models we use to
create our coarse edits (column 2) during training affect the model’s behavior. If we
warp the reference frame (column 1) using the flow only (column 3), the model learns
how to harmonize the edges of the edited regions, but remains very conservative and
does not add much details to increase realism. On the other extreme, if we only use the
piecewise affine motion model (column 4), the model learns to hallucinate excessively,
losing its ability to preserve object identity. Our full solution trains with both motion
models (column 5) to increase the model versatility, allowing the model to generate
realistic details while still maintaining good adherence to the user input.

4.2 Ablation studies

In this section, we evaluate the role that different motion models play, as well
as the importance of cross-reference attention.

Qualitative comparison. Intuitively, training the model only on flow-warped
images would prevent the model from learning to synthesize drastic changes,
since flow-warping tends to be well-aligned around the edges. On the other hand,
using the piecewise-affine motion model requires the model to adjust the pose
of each segment (and learn to connect them together nicely), which forces the
model to only use the input as a coarse conditioning. In Fig. 9, we show that the
behavior of the model trained on different motion models is consistent with our
intuition, where the model trained on flow-only preserves the content and refines
the edges, while the model trained only on the piecewise-affine model struggles
with preserving identity. On the other hand, the model trained on different
motion models falls in the sweet-spot where it addresses user edits faithfully
while adding content as needed.
On the architecture side, we compare using only the CLIP image embedding of
the reference for the cross-attention as opposed to the cross-reference-attention.
Since CLIP embeddings only carry semantics, we observe in Fig. 10 that the
model struggles in harmonizing the edited regions, because of a limited awareness
of what has changed in the image.

Quantitative comparison. We evaluate our ablations on a held-out validation
dataset from our video dataset. In the table on the right, we show that the model
trained with flow-data and affine-motion are the top performers on perceptual
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without detail extractor oursreference coarse edit

Fig. 10: Architecture ablation. Without the detail extractor branch (3rd column),
the model struggles with spatial reasoning as it cannot access the grounding of the orig-
inal reference image (1st column). This ablation’s outputs are overly conservative, not
steering too far away from the coarse edit (2nd column). Our full model produces much
more realistic edits (4th column), with harmonious shadows and object-background
contact. It refines object boundaries and synthesizes plausible reflections.

Model & Training Data Test Data LPIPS ↓

Piecewise affine Piecewise affine 0.231± 0.007
Flow-based 0.220± 0.007

Flow-based Piecewise affine 0.229± 0.007
Flow-based 0.190± 0.007

Both motion models Piecewise affine 0.327± 0.007
(no cross-ref attn) Flow-based 0.269± 0.008

Both motion models Piecewise affine 0.231± 0.007
(Full method) Flow-based 0.196± 0.007

loss on both types of test and that dropping the cross-reference attention and
relying on the reference CLIP embedding causes a severe drop in performance.

5 Limitations and conclusions

We present a method of assisting artists in photo editing through generative
models while retaining a large level of control that traditional editing pipelines
provide. We observe that with the appropriate motion model, we can use videos
to train a model that can serve as a direct plugin in the editing process. We
hope that our work inspires future editing research that can simply remove the
cumbersome last-mile work by the press of a button.

Our generative model is trained for spatial compositions using video data. It
can spatially re-compose parts of the image but would struggle to insert objects
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from a completely different image as opposed to image composition baselines.
Furthermore, we inherit the limitations of Latent Diffusion Models, which we
use as our base models, especially for generating hands, faces, and small objects.
Acknowledgment We would like to thank Sachin Shah for testing our user
interface and creating several of the artwork used throughout the paper, and we
graciously thank him for his feedback on the paper writing and project page.
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A User study

We asked 27 users to evaluate 30 pairs of our output against the baseline, with
the question "For the following edit, which of those images do you find a more
realistic result?" So that the user considers the realism of the output as well as
the faithfulness of the output to the edit. Out of total of 810 votes, 722 votes
were for Magic Fixup edit. In 8 out of 30 images, 100% of the users preferred our
method over the baseline. The output with lowest votes for Magic Fixup had 13
out of 27 votes, so the least preferred edit was on par with SDEdit. In Figure
11, we plot the preferences of the users for Magic Fixup, in a sorted order. We
note that there is a significant preference for our model against SDEdit in the
majority of edits. The pair with the least votes for Magic Fixup is the edit

Fig. 11: User study comparisons. Here we show the percentage amount of users
that preferred our editing output against SDEdit, in a sorted order in terms of the
percentage preference. Note that users heavily prefer our images in majority of images,
with 8 out of 30 edits, all users unanimously preferred our edit.

of the Monet painting shown on the last row of Figure 12. Note that paintings
are out of the domain for our model since we cannot have videos of dynamic
painting to train on. In the output on the painting edit, we can notice that the
brush strokes associated with impressionist painting style is less apparent in the
output, as the model is increasing the realism of the output.
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27 votes

27 votes

18 votes

13 votes 14 votes

9 votes

0 votes

0 votes

Magic Fixup (ours) SDEdit (Meng et al. 2022)Coarse editReference

Fig. 12: Visual comparisons for the user study. We show sample pairs from the
user study that compare our method against SDEdit. The top two rows are examples
where users unanimously preffered our method. The last row (the painting example),
is the example with the least votes for our method, where the number of votes is on
par with the votes for SDEdit.
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